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Abstract. Deep learning approaches to breast cancer detection in mam-
mograms have recently shown promising results. However, such models
are constrained by the limited size of publicly available mammography
datasets, in large part due to privacy concerns and the high cost of gener-
ating expert annotations. Limited dataset size is further exacerbated by
substantial class imbalance since “normal” images dramatically outnum-
ber those with findings. Given the rapid progress of generative models
in synthesizing realistic images, and the known effectiveness of simple
data augmentation techniques (e.g. horizontal flipping), we ask if it is
possible to synthetically augment mammogram datasets using genera-
tive adversarial networks (GANs). We train a class-conditional GAN to
perform contextual in-filling, which we then use to synthesize lesions onto
healthy screening mammograms. First, we show that GANs are capable
of generating high-resolution synthetic mammogram patches. Next, we
experimentally evaluate using the augmented dataset to improve breast
cancer classification performance. We observe that a ResNet-50 classifier
trained with GAN-augmented training data produces a higher AUROC
compared to the same model trained only on traditionally augmented
data, demonstrating the potential of our approach.

1 Introduction

A major enabler of the recent success of deep learning in computer vision has
been the availability of massive-scale, labeled training sets (e.g. ImageNet [1]).
However, in many medical imaging domains, collecting such datasets is difficult
or impossible due to privacy restrictions, the need for expert annotators, and
the distribution of data across many sites that cannot share data. The class
imbalance naturally present in many medical domains, where “normal” images
dramatically outnumber those with findings, further exacerbates these issues.
A common technique used to combat overfitting is to synthetically increase the
size of a dataset through data augmentation, where affine transformations such
as flipping or resizing are applied to training images. The success of these sim-
ple techniques raises the question of whether one can further augment training

*Denotes equal contribution.
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Fig. 1: Generated samples from ciGAN using previously unseen patches as con-
text. Each row contains (from left to right) the original image, the input to
ciGAN, and the synthetic example generated for the opposite class. The first
two rows contain examples of the GAN synthesizing a non-malignant patch from
a malignant lesion. The third and fourth rows are examples of the GAN syn-
thesizing a malignant lesion on a non-malignant patch, using randomly selected
segmentations from other malignant patches. We observe that the GAN is able
to incorporate contextual information to smooth out borders of the segmentation
masks.

sets using more sophisticated methods. One potential avenue could be to syn-
thetically generate new training examples altogether. While generating training
samples may seem counterintuitive, rapid progress in designing generative mod-
els (particularly generative adversarial networks (GANs) [2,3,4]) to synthesize
highly realistic images merits exploration of this proposal. Indeed, GANs have
been used for data augmentation in several recent works [5,6,7,8,9], and investi-
gators have applied GANs to medical images such as magnetic resonance (MR)
and computed tomography (CT) [10,11]. Similarly, GANs have been used for
data augmentation in liver lesions [12], retinal fundi [13], histopathology [14],
and chest x-rays [15].

A particular domain where GANs could be highly effective for data augmen-
tation is cancer detection in mammograms. The localized nature of many tumors
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Fig. 2: The ciGAN generator architecture. The inputs consist of four channels
(in blue): one context image (where the lesion is replaced with a random noise
mask), one lesion mask, and two class channels for indicating a malignant or non-
malignant label. Each convolutional block (in green) represents two convolutional
layers with an upsampling operation.

in otherwise seemingly normal tissue suggests a straightforward, first-order pro-
cedure for data augmentation: sample a location in a normal mammogram and
synthesize a lesion in this location. This approach also confers benefits to the gen-
erative model, as only a smaller patch of the whole image needs to be augmented.
GANs for data augmentation in mammograms is especially promising because
of 1) the lack of large-scale public datasets, 2) the small proportion of malignant
outcomes in a normal population (∼0.5%) [16] and, most importantly, 3) the
clinical impact of screening initiatives, with the potential for machine learning
to improve quality of care and global population coverage [17].

Here, we take a first step towards harnessing GAN-based data augmenta-
tion for increasing cancer classification performance in mammography. First, we
demonstrate that our GAN architecture (ciGAN) is able to generate a diverse
set of synthetic image patches at a high resolution (256x256 pixels). Second, we
provide an empirical study on the effectiveness of GAN-based data augmentation
for breast cancer classification. Our results indicate that GAN-based augmen-
tation improves mammogram patch-based classification by 0.014 AUC over the
baseline model and 0.009 AUC over traditional augmentation techniques alone.
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2 Proposed Approach: Conditional Infilling GAN

GANs are known to suffer from convergence issues, especially with high dimen-
sional images [18,3,4,19]. To address this issue, we construct a GAN using a
multi-scale generator architecture trained to infill a segmented area in a tar-
get image. First, our generator is based on a cascading refinement network [20],
where features are generated at multiple scales before being concatenated to
improve stability at high resolutions. Second, rather than requiring the genera-
tor to replicate redundant context in a mammography patch, we constrain the
generator to infill only the segmented lesion (either a mass or calcification). Fi-
nally, we use a conditional GAN structure to share learned features between
non-malignant and malignant cases [21].

2.1 Architecture

Our conditional infilling GAN architecture (here on referred to as ciGAN) is out-
lined in Figure 2. The input is a concatenated stack (in blue) of one grayscale
channel with the lesion replaced with uniformly random values between 0 and
1 (the corrupted image), one channel with ones representing the location of the
lesion and zeros elsewhere (the mask), and two channels with values as [1,0]
representing the non-malignant class or [0,1] as the malignant class (the class
labels). The input stack is downsampled to 4x4 and passed into the first convolu-
tional block (in green), which contains two convolutional layers with 3x3 kernels
and ReLU activation functions. The output of this block is upsampled to twice
the current resolution (8x8) and then concatenated with an input stack resized
to 8x8 before being passed into the second convolutional block. This process is
repeated until a final resolution of 256x256 is obtained. The convolutional layers
have 128, 128, 64, 64, 32, 32, and 32 kernels from the first to the last block. We
use the nearest neighbors method for upsampling.

The discriminator network has a similar but inverse structure. The input
consists of a 256x256 image. This is passed through a convolutional layer with
32 kernels, 3x3 kernel size, and the LeakyReLU [22] activation function, followed
by a 2x2 max pooling operation. We apply a total of 5 convolutional layers,
doubling the number of kernels each time until the final layer of 512 kernels.
This layer is then flattened and passed into a fully connected layer with one unit
and a sigmoid activation function.

2.2 Training Details

Patch-level training: Given that most lesions are present within a localized
area much smaller than the whole breast image (though context & global fea-
tures may also be important), we focus on generating patches (256x256) con-
taining such lesions. This allows us to more meaningfully measure the effects
of GAN-augmented training as opposed to using the whole image. Furthermore,
patch-level pre-training has been shown to increase generalization for full images
[23,24,25].
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The ciGAN model is trained using a combination of the following three loss
functions:
Feature Loss: For a feature loss, we utilize the VGG-19 [26] convolutional neu-
ral network, pre-trained on the ImageNet dataset. Real and generated images
are passed through the network to extract the feature maps at the pool1, pool2,
and pool3 layers, where the mean of the absolute errors is taken between the
maps. This loss encourages the features of the generator to match the real im-
age at different spatial resolutions and feature complexities. Letting Φi be the
collection of layers in Φ, the VGG19 network, where Φ0 is the input image, we
define VGG loss for the real image R and generated image S as:

LR,S(θ) =
∑
l

||Φl(R)− Φl(S)||1

Adversarial Loss: We use the adversarial loss formulated in [27], which seeks
optimize over the following mini-max game involving generator G and discrimi-
nator D:

min
G

max
D
LGAN (G,D)

LGAN (G,D) = E(c,R)[logD(c,R)] + ER[log(1−D(c, S)]

Where c is the class label, R is a real image, and S is the generated image.
Boundary Loss: To encourage smoothing between the infilled component and
the context of a generated image, we introduce a boundary loss, which is the L1

difference between the real and generated image at the boundary:

BR,S(θ) = ||w � (R− S)||1

Where R is the real image, S is the generated image, w is the mask boundary
with a Gaussian filter of standard deviation 10 applied, and � is the element-wise
product.
Training details: In our implementation, we alternate between training the
generator and discriminator when the loss for either drops below 0.3. We use
the Adam [28] optimizer with β1=0.9, β2=0.999, ε = 10−8, a learning rate of
1e-4, and batch size of 8. To stabilize training, we first pre-train the generator
exclusively on feature loss for 10,000 iterations. Then, we train the generator
and discriminator on all losses for an additional 100,000 iterations. We weigh
each loss with coefficients 1.0, 10.0, and 10000.0 for GAN loss, feature loss, and
boundary loss, respectively.

3 Experiments

3.1 DDSM Dataset

The DDSM (Digital Database for Screening Mammography) dataset contains
10,480 total images, with 1,832 (17.5%) malignant cases and 8,648 (82.5%) non-
malignant cases. Image patches are labeled as malignant or non-malignant along
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Data augmentation scheme AUC

Baseline (no augmentation) 0.882

Traditional augmentation 0.887

ciGAN + Traditional aug 0.896

Table 1: ROC AUC (Area under ROC curve) for three augmentation schemes.

with the segmentation masks in the dataset. Both calcifications and masses are
used and non-malignant patches contain both benign and non-lesion patches.

We apply a 80% training, 10% validation, and 10% testing split on the
dataset. To process full resolution images into patches, we take each image
(∼5500x3000 pixels) and resize to a target range of 1375x750 while ensuring the
original aspect ratio is maintained, as described in [23]. For both non-malignant
and malignant cases, we generate 100,000 random 256x256 pixel patches and
only accept patches that consist of more than 75% breast tissue.

3.2 GAN-based data augmentation

We evaluate the effectiveness of GAN-based data augmentation on the task of
cancer detection. We choose the ResNet-50 architecture as our classifier network
[29]. We use the Adam optimizer with an initial learning rate of 10−5 and β1=0.9,
β2=0.999, ε = 10−8. To achieve better performance, we initialize the classifier
with ImageNet weights. For each regime, we train for 10,000 iterations on a
batch size of 32 with a 0.9 learning rate decay rate every 2,000 iterations. The
GAN is only trained on the training data used for the classifier.

For traditional image data augmentation, we use random rotations up to 30
degrees, horizontal flipping, and rescaling by a factor between 0.75 and 1.25.
For augmentation with ciGAN, we double our existing dataset via the following
procedure: for each non-malignant image, we generate a malignant lesion onto
it using a mask from another malignant lesion. For each malignant patch, we
remove the malignant lesion and generate a non-malignant image in its place.
In total, we produce 8,648 synthetically generated malignant patches and 1,832
synthetically generated non-malignant patches. We train the classifier by initially
training on equal proportions of real and synthetic data. Every 1000 iterations,
we increase the relative proportion of real data used by 20%, such that the final
iteration is trained on 90% real data. We observe that this regime helps prevent
early overfitting and greater generalization for later epochs.

3.3 Results

Table 1 contains the results of three classification experiments. ciGAN, combined
with traditional augmentation, achieves an AUC of 0.896. This outperforms the
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baseline (no augmentation) model by 0.014 AUC (p < 0.01, DeLong method [30])
and traditional augmentation model by 0.009 AUC (p < 0.05). Direct comparison
of our results with similar works is difficult given that DDSM does not have
standardized training/testing splits, but we find that our models compare on
par or favorably to other DDSM patch classification efforts [25,31,32].

4 Conclusion

Recent efforts for using deep learning for cancer detection in mammograms have
yielded promising results. One major limiting factor for continued progress is the
scarcity of data, and especially cancer positive exams. Given the success of simple
data augmentation techniques and the recent progress in generative adversarial
networks (GANs), we ask whether GANs can be used to synthetically increase
the size of training data by generating examples of mammogram lesions. We
employ a multi-scale class-conditional GAN with mask infilling (ciGAN), and
demonstrate that our GAN indeed is able to generate realistic lesions, which
improves subsequent classification performance above traditional augmentation
techniques. ciGAN addresses critical issues in other GAN architectures, such as
training instability and resolution detail. Scarcity of data and class imbalance
are common constraints in medical imaging tasks, and we believe our techniques
can help address these issues in a variety of settings.
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